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Maintenance of engineering assets (for example, aircraft, jet engines, and wind turbines) is a profitable

business. Unfortunately, building models that estimate remaining useful life for large fleets is daunting due to

factors such as duty cycle variation, harsh environments, inadequatemaintenance, andmass production problems

that cause discrepancies between designed and observed lives. We model cumulative damage through recurrent

neural networks. Besides architectures such as long short-termmemory and gated recurrent unit, we introduced a

novel physics-informed approach. Essentially, we merge physics-informed and data-driven layers. With that,

engineers and scientists can use physics-informed layers to model well understood phenomena (for example,

fatigue crack growth) and use data-driven layers tomodel poorly characterized parts (for example, internal loads).

A numerical experiment is used to present the main features of the proposed physics-informed recurrent neural

network. The problem consists of predicting fatigue crack length for a fleet of aircraft. The models are trained

using full input observations (far-field loads) and very limited output observations (crack length data for only a

portion of the fleet). The results demonstrate that our proposed physics-informed recurrent neural network can

model fatigue crack growth even when the observed distribution of crack length does not match the fleet

distribution.

Nomenclature

a = fatigue crack length
a = state representing damage
C, m = Paris law coefficients
h = states representing the sequence
t = time step
x = input (observable) variables
Δa = damage increment
ΔK = stress intensity range
ΔS = far-field stress

I. Introduction

P REDICTIVE models [1–4] are often used to model cumulative
distress in critical components (diagnosis and prognosis) of

engineering assets (e.g., aircraft, jet engines, and wind turbines).
These models usually leverage data coming from design, manufac-
turing, configuration, online sensors, historical records, inspection,
maintenance, location, and satellite data. In terms of modeling,
we believe most practitioners would agree that 1) machine learning
models offer flexibility but tend to require large amounts of data,

and b) physics-based models are grounded on first principles and
require good understanding of physics of failure and degradation
mechanisms. In practice, the decision between machine learning and
physics-basedmodels depends on factors such as existing knowledge
(maybe even legacy models), amount and nature of data, accuracy
and computational requirements, timelines for implementation, etc.
The interested reader can find a discussion on how these concepts

apply to defense systems in Refs. [5,6] and examples of industrial and
commercial applications.‡,§,¶,**

The literature on the use of traditional andmodernmachine learning
methods for diagnosis and prognosis is rich. For example, Si et al. [7]
reviewed statistical data-driven approaches for prognoses that rely only
on available past observed data and statistical models (regression,
Brownian motion with drift, gamma processes, Markovian-based
models, stochastic filtering-based models, hazard models, and hidden
Markov models). Tamilselvan and Wang [8] discussed a multisensor
health diagnosis and prognosis method using deep belief networks.
They demonstrate how deep belief networks can model the probabi-
listic transition between the health state and the damaged state in
aircraft engines and power transformers. Interestingly, Son et al. [9]
reported how they solved the same aircraft engine problem using the
Wiener process combined with principal component analysis. Susto
et al. [10] discussed how to approach the remaining useful life estima-
tion using ensembles of classifiers. They based their work on tradi-
tional support vectormachines andk-nearest neighbors, and they tested
it on estimating the remaining useful life of tungsten filaments used in
ion implantation (important in semiconductor fabrication). Khan and
Yairi [11] reviewed the application of deep learning in structural health
management (simpleautoencoders; denoising autoencoder; variational
autoencoders; deep belief networks; restricted and deep Boltzmann
machines; convolutional neural networks; and purely data-driven
versions of recurrent neural networks, including the long short-term
memory and gated recurrent units). They found that most approaches
are still application specific (unfortunately, they did not find a clear
way to select, design, or implement a deep learning architecture for
structural health management). They also advise that a tradeoff study
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should be performedwhen considering complexity and computational
cost. Stadelmann et al. [12] brought an interesting discussion on
deep learning applied to industry. Among the case studies, they dis-
cussed predictivemaintenancewithmachine learning approaches such
as support vector machines, Gaussian mixtures, principal component
analysis. Authors also discussed how these approaches compare with
deep learning methods such fully connected and variational as autoen-
coders.
There is also considerable research on the use of physics-based

methods for diagnosis and prognosis. Although the literature tends
to be very application specific, most authors use a physics-based
model for damage accumulation and a statistical/machine learning
technique for parameter estimation and uncertainty quantification.
For example, Daigle and Goebel [13] formulated physics-based
prognostics as a joint state-parameter estimation problem, in which
the state of a system along with parameters describing the damage
progression are estimated. This is followed by a prediction problem,
in which the joint state-parameter estimate is propagated forward in
time to predict the end of life and remaining useful life. They
demonstrate their methodology in the estimation of the remaining
useful life of a centrifugal pump used for liquid oxygen loading
located at the NASA Kennedy Space Center. Li et al. [14] modeled
fatigue crack growth on the leading edge of an aircraft wing.
The model was updated through dynamic Bayesian networks with
observed data (including both damage and loads). The updatedmodel
was used in diagnosis and prognosis of an aircraft digital twin (virtual
representation of the physical aircraft). Ling et al. [15] also modeled
fatigue crack growth on the leading edge of an aircraft wing.
However, instead of only estimating the remaining useful life, they
used the information gain theory to evaluate the usefulness of aircraft
component inspection. This helps in deciding whether or not inspec-
tion is worthwhile (e.g., model improvement justifying the cost).
A dynamic Bayesian network tracks and forecasts fatigue crack
growth, and the detection of a crack is modeled through probability
of detection. Information gain per cost of inspection is used to identify
the optimal timing of the next inspection. Yucesan and Viana [16]
modeled main bearing fatigue in onshore wind turbines, coupling
damage models for bearing raceway and grease (lubricant). Their
results demonstrated that, althoughbearing fatigue is a secondary life-
limiting factor, it can still contribute significantly to bearing failures.
They also showed how to use their physics-based cumulative damage
model to promote component life extension. Berri et al. [17] proposed
a framework for prognosis including signal acquisition, fault detec-
tion and isolation, and remaining useful life estimation. To keep
computational cost manageable, they proposed using strategies
for signal processing combined with physical models of different
fidelity and machine learning techniques. They successfully tested
their approach on an aircraft electromechanical actuator for secon-
dary flight controls. Byington et al. [18] presented a study on the use
of neural networks for prognosis of aircraft actuator components. The
framework covered tasks such as feature extraction, data cleaning,
classification, information fusion, and prognosis. They successfully
demonstrated their approach on an F-18 stabilator electrohydraulic
servo valves. Jacazio and Sorli [19] presented an enhanced particle
filter framework for prognosis of electromechanical flight controls
actuators. They achieved promising results and showed the benefits of
their approach as compared to other published methods.
Using artificial neural networks for solving differential equations

with applications in engineering is a relatively old concept [20–23].
Nevertheless, the unparalleled computational power available these
days contributed to the popularization of machine learning in engi-
neering applications [24–26]. The scientific community has been
studying and proposing deep learning architectures that leverage
mathematical models based in physics and engineering principles
[27–31]. Differential equations are used to train multilayer percep-
trons and recurrent neural networks. The idea is to use the physics
laws (in the form of differential equations) to help in handling the
reduced number of data points and to constrain the hyperparameter
space. With incompressible fluids, for example, this is done by
discarding nonrealistic solutions violating the conservation of mass
principle. Raissi [32] approximated the unknown of the solution of

partial differential equations by two deep neural networks. The first
network acts as a prior on the unknown solution (enabling avoidance
of ill-conditioned and unstable numerical differentiations). The sec-
ond network works as a fine approximation to the spatiotemporal
solution. The methodology was tested on a variety of equations used
in fluid mechanics, nonlinear acoustics, gas dynamics, and other
fields. Wu et al. [33] discussed, in depth, how to augment turbulence
models with physics-informedmachine learning. They demonstrated
a procedure for computing mean flow features based on the integrity
basis for mean flow tensors and proposed using machine learning to
predict the linear and nonlinear parts of the Reynolds stress tensor
separately. They used the flow in a square duct and the flow over
periodic hills to evaluate the performance of the proposed method.
Hesthaven and Ubbiali [34] proposed a nonintrusive reduced-basis
method (using proper orthogonal decomposition and neural net-
works) for parametrized steady-state partial differential equations.
The method extracts a reduced basis from a collection of snapshots
through proper orthogonal decomposition and employs multilayer
perceptrons to approximate the coefficients of the reduced model.
They successfully tested the proposed method on the nonlinear
Poisson equation in one and two spatial dimensions, and on two-
dimensional cavity viscous flows, modeled through the steady
incompressible Navier–Stokes equations. Swischuk et al. [35] dem-
onstrated through case studies (predictions of the flow around an
airfoil and structural response of a composite panel) that proper
orthogonal decomposition is an effective way to parametrize a
high-dimensional output quantity of interest in order to define a
low-dimensional map suitable for data-driven learning. They tested
a variety of machine learning methods such as artificial neural net-
works, multivariate polynomial regression, k-nearest neighbor, and
decision trees. The interested reader can also find literature on Gaus-
sian processes [30,36].
As we just discussed, there are several ways to build physics-

informed machine learning models. In this work, we focus on neural
network models suitable for solving ordinary differential equations
(describing time-dependent quantities of interest). Chen et al. [29]
demonstrated that deep neural networks can approximate dynamical
systems for which the response comes out of integrating ordinary
differential equations. In their approach, deep neural networks
represent very fine discretization along the lines of a very fine Euler
integration. This is particularly applicable to recurrent neural net-
works and residual networks. Interestingly, the loss function operates
on top of the ordinary differential equation solver. Therefore, training
data are generated through adjoint methods (automatic differentia-
tion). Kani and Elsheikh [31,37] introduced the deep residual recur-
rent neural networks where a fixed number of layers are stacked
together tominimize the residual (or reduced residual) of the physical
model under consideration. To reduce the computational complexity
associated with high-fidelity numerical simulations of physical sys-
tems (which generate the training data), they also used proper
orthogonal decomposition. They demonstrated their approach with
the simulation of a two-phase (oil and water) flow through porous
media over a two-dimensional domain.
Our work is focused on building prognosis models that feed large

amounts of data produced by fleets of engineering assets. Themodels
proposed in this paper are hybrid models that implement physics-
based kernels within deep neural networks and are designed specifi-
cally for prognosis. In this contribution,wepropose a recurrent neural
network cell derived from the concept of cumulative damage models
[38,39]. These models, often used to describe the irreversible accu-
mulation of damage throughout the useful life of components (or
systems), are formulated through an initial value problem.We start by
proposing a recurrent neural network architecture for cumulative
damage models. Then, we break down the recurrent neural network
model that defines the incremental damage over time into submodels
and discuss how the approach is flexible and can mix physics-based
and machine learning submodels. Finally, we demonstrate how to
apply it to tracking fatigue crack growth at a fleet level. In principle,
the proposed recurrent neural network cell could also be applied to
model other failure mechanisms, such as corrosion, wear, and creep,
among others.
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The remainder of the paper is organized as follows. Section II
reviews the basic concepts behind cumulative damage models and
fatigue crack growth. Section III gives an overview on physics-
informed neural networks (focusing on recurrent neural networks)
and presents the proposed recurrent neural networks cell, illustrating
how to apply it to fatigue crack growthmodeling. Section IV presents
and describes the numerical experiments and presents the results
alongwith discussion. Finally, Sec. V closes the paper, recapitulating
salient points and presenting final conclusions.

II. Cumulative Damage Models and Fatigue Crack
Propagation

Cumulative damage models [38,39] are very useful for tracking
and forecasting damage through discrete time series. These models
are often used to describe the irreversible accumulation of damage
throughout the useful life of components (or systems). A cumulative
damage model represents damage at time t as

at � at−1 � Δat (1)

where at−1 is the damage level at time t − 1, and Δat is the damage
increment, which is often a function of bothat−1 and inputs xt at time
t. The characterization of the damage at and the inputs xt is highly
specific to the problem. The damage at is usually associated with a
failure mechanism and at is ideally an observable quantity. Although
this is not a requirement, it significantly facilitates the modeling task
[39–41]. For example, if fatigue is the failure mechanism, fatigue
crack length is the observable quantity. The inputs xt usually express
time-dependent loading and boundary conditions (e.g., pressures,
temperatures, torques, mechanical and thermal stresses, etc.) or even
operating points (e.g., altitude, thrust, angle of attack, etc.).
In this paper, we use fatigue crack growth as an example of a

cumulative damagemechanism. From a physics of failure standpoint,
and quoting Dowling (Ref. [42] p. 399) for a definition, the “process
of damage and failure due to cyclic loading is called fatigue.” Fatigue
crack propagation is usually modeled through Paris law [43]. Math-
ematically, the crack length a is modeled through the following
ordinary differential equation:

da

dt
� CΔKm (2)

whereC andm are material properties, andΔK is the stress intensity
range (which depends on factors such as localized geometry, current
crack length, and far-field cyclic stress). The Paris law coefficients,C

and m, can be obtained through coupon data; and many engineering
materials have constants documented in handbooks such as Ref. [44].
In its discrete form, the Paris law can be written as a cumulative
damage model:

at � at−1 � CΔKm
t (3)

where the subscripts t and t − 1 define the current and previous time
stamps, respectively.
In engineering applications (for example, prognosis and health

management of industrial assets such as aircraft, jet engines, wind
turbines, etc.), the cyclic loads are eithermeasured or estimated. Then,
engineeringmodelsmap the cyclic loads and current crack length into
a stress intensity range. For example, assuming that fatigue damage
accumulates under a mode I loading condition (perpendicular to the
crack plane), the stress intensity range ΔKt can be expressed as

ΔKt � FΔSt
������������
πat−1

p
(4)

where ΔSt is the far-field cyclic stress time history; and F is a
dimensionless function of geometry and, to some extent, the crack
length relative to its width. For example, for crack in infinite plateF �
1 and for a single-edge crack in finite-width sheetF � 1.12 (as long as
the sheet width is much larger than the crack length). Discussion on
ΔKt and F for different conditions can be found in Ref. [42] (p. 399),
Ref. [45] (p. 550), and Refs. [46,47].
Building accurate estimates of ΔSt might be just as challenging

as modeling damage accumulation itself. Most of the time, ΔSt
is not measured directly but, instead, it is obtained with the help
of engineering models (e.g., through finite element modeling). Even
if the instantaneous far-field stresses are available, converting
far-field stress time histories into far-field cyclic stresses is usually
done through cycle counting approaches such as the rainflowmethod
[48]. Not surprisingly, the cycle counting approaches are application/
industry dependent. Even though this is an interesting topic, we
consider the discussion on how to obtain ΔSt outside the scope of
this paper.

III. Recurrent Neural Networks and Physics-Informed
Machine Learning

Thiswork is focused on artificial neural networks that represent the
solutions of ordinary differential equations. As we will demonstrate,
recurrent neural networks (RNNs) are ideal for this task.

A. Brief Overview of Recurrent Neural Networks

Recurrent neural networks [49] have been successfully used to
model time-series data [50–52], speech recognition [53], text sequence
[54], andmanyother applications.As illustrated inFig. 1, in every time
step t, recurrent neural networks apply a transformation to a state h in
the following fashion:

ht � f�ht−1; xt� (5)

Fig. 1 Recurrent neural network. The function f�ht−1;xt� (also known
as the RNN cell), implements the transition from step to step throughout
the time series.

Fig. 2 Detailed recurrent neural networks cells. The arrow pointing upward indicates the state can be observed at time step t. In LSTM and GRU cells,
squares are perceptrons with predefined activation functions, and the oval shape is just tanh activation.
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where t ∈ �0; : : : ; T� represents the time discretization, h ∈ Rnh are
the states representing the quantities of interest, x ∈ Rnx are input
variables, and f�:� is the transformation to the state. Depending on the
application, h can be available (i.e., actually observed) in every time
step t or only at specific observation times.
The repeating cells for a recurrent neural networks implement

the function f�ht−1; xt� in Eq. (5), which defines the transformation
applied to the states and inputs in every time step. Cells such as
the ones illustrated in Fig. 2 are commonly found in data-driven
applications. Figure 2a shows the simplest recurrent neural network
cell, where a fully connected dense layer (e.g., the perceptron) with a
sigmoid activation functionmaps the inputs at time t and states at time
t − 1 into the states at time t. Figure 2b show two other popular
architectures: the long short-termmemory (LSTM) [55] and thegated
recurrent unit (GRU) [56]. These architectures have extra elements
(gates) to control the flow and update of the states through time, and
they aim at improving the recurrent neural network generalization
capability and training by mitigating the vanishing/exploding gra-
dient problem [49].
Recurrent neural networks are trained in a very similar way to

traditional neural networks. The inputs are fed forward for every time
step through the cell. Then, the loss value, calculated with the cell
output and ground truth values, and its gradient are used to adjust the
networkweights through the process called backpropagation through
time [49]. Here, we used the mean square error (MSE) as the loss
function:

MSE � 1

nOBS

XnOBS
i�1

�
hRNNi − hOBSi

�
2

(6)

where nOBS is the number of observations, hRNNi is the ith RNN

prediction, and hOBSi is the ith observation.

B. Proposed Cumulative Damage Cell for Recurrent Neural
Networks

In this paper, we propose the cell illustrated in Fig. 3a to be used
for modeling cumulative damage through recurrent neural networks.
In other words, Fig. 3a represents the recurrent neural network
implementation of Eq. (1), and the block denoted by “MODEL”
implements the damage increment Δat as a function of at−1 and xt
at time t. As illustrated by Fig. 2, the design of the recurrent neural
network cell is not limited to a simple perceptron and can usemultiple
tensor operations and gates. Instead, the design is limited only by
the computational cost of the forward pass (prediction) and the
availability of gradients with respect to trainable hyperparameters
(backward propagation). Therefore, the main idea behind the design
illustrated in Fig. 3a is the numerical integration of the differential
equation that describes the physics of failure in case. As a matter
of fact, the design shown in Fig. 3a is equivalent to implementing
first-order Euler integration using recurrent neural networks.
From an implementation perspective, there is nothing preventing

Model from assuming the form of any artificial neural network
structure, such as the traditional multilayer perceptron. Nevertheless,
we believe an interesting possibility for building the MODEL
block is using a hybrid approach, where some parts of MODEL
are physics informed while others are data driven. To clarify the

nomenclature, here, we use “physics informed” to refer to functional
forms, transformations, equations, or laws based on physics. In such
cases, computational efficiency is an important point to consider and
strategies using reduced-order modeling might become attractive.
Although the discussion is outside of the scope of this paper,
the interested reader is referred to Refs. [57,58]. We believe the
decision between using a physics-informed versus a “data-driven”
layer depends on the application, and we will use the fatigue crack
growth example to illustrate it.
Figure 3b illustrates the fully physics-informed implementation of

the cumulative damage cell for fatigue crack growth. In other
words, Fig. 3b illustrates how to implement the model described by
Eq. (3) through a recursive neural network. The stress intensity layer
implementsΔKt � FΔSt

������������
πat−1

p
, whereΔSt is the input, at−1 is the

state, and F is the geometry-dependent factor, which can be obtained
through engineering analysis (or, alternatively, it can be implemented
as trainable parameter estimated during training of the recurrent
neural network). The Paris law layer implements Δat � CΔKm

t ,
where ΔKt comes from a previous layer, and C and m are the Paris
law coefficients, which should be readily available for many engi-
neeringmaterials (or, alternatively, they can be implemented as train-
able parameters estimated in the recurrent neural network training).
Figure 3c illustrates the hybrid physics-informed neural network

model implementation of the cumulative damage cell for fatigue
crack growth. In this case, an artificial neural network layer, such
as a multilayer perceptron, substitutes the stress intensity range layer
shown in Fig. 3b. This is very powerful in certain real life applica-
tions, for example, when ΔKt from physics is misled by poorly
estimated ΔSt, or when it is plainly difficult to model ΔKt as a
function of observed inputs xt. Therefore, the training of the recurrent
neural network is such that the artificial neural network layer will
learn how to map xt and at−1 into ΔKt. In this case, the artificial
neural network layer is compensating for the lack of knowledge about
the stress intensity range.
As we discussed, Fig. 3 has the sole purpose of implementing the

numerical integration of the ordinary differential equation that
describes the target physics of failure [Eq. (2)]. As we will further
discuss in Sec. IV, input data are available throughout time and initial
damage is known. Therefore, this is an initial value problem and it
makes sense using first order Euler integration, which leads to Fig. 3a.
The blocks used in Fig. 3 come out of the discretization of Eq. (2).We
believe the decision of which block will be physics informed and
which onewill be data driven depends on the application. However, in
this particular paper, we argue that Δat � CΔKm

t is relatively well
characterized by coupon data, whereas ΔKt � FΔSt

������������
πat−1

p
carries

the uncertainty due to engineering models used for ΔSt estimation.
Therefore, for the sake of our study, we suggest implementingΔKt as
a data-driven layer.

IV. Numerical Experiments and Discussion

First, we discuss the specifics of fatigue crack growth at a specific
control point and the extension to the fleet of aircraft. Then, we
present two scenarios for fatigue crack growth estimation of aircraft
fuselagepanels andprediction at a fleet of aircraft. In the first scenario,
we consider that the control point in the fuselage panel is instrumented
and continuously monitored through dedicated structural health

Fig. 3 Cumulative damage and examples of RNN cells for crack growth. Stress intensity range layer implements ΔKt � FΔSt
������������

πat−1
p

, and Paris law
layer implements Δat � CΔKm

t .
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monitoring sensors (e.g., comparative vacuum monitoring [59], fiber

Bragg grating sensors [60], etc.). In the second scenario, we consider
the control point in the fuselage panel is inspected in regular intervals

through nondestructive evaluation approaches (e.g., eddy current

[61], ultrasound [62], dye penetrant inspection [63], etc.).
These applications impose two major challenges for recurrent

neural networks:
1) The sequences are very large (thousands of steps).
2) Output values are known at the beginning of the sequence but

are observed only at few time stamps throughout the sequence.
The large sequences can lead to a significant increase in the norm of

the gradients during training, which can harm the learning process.

Moreover, byhavingonlya fewobservations throughout the sequence,

the long-term components can grow or decrease exponentially
(exploding/vanishing gradient). This fast saturation makes it very

hard for the model to learn the correlation between the observations.
The interested reader is referred to the work of Pascanu et al. [64] and

Sutskever [65] for further discussion on the difficulties of training

recurrent neural networks under such circumstances.

A. Fleet of Aircraft and Fuselage Panel Control Point

When airline companies operate a fleet of a particular aircraft

model, they usually adopt a series of operation and maintenance
procedures that maximize the use of their fleet under economical

and safety considerations. For example, these companies rotate their

aircraft fleet through different routes following specific mission
mixes. This way, no single aircraft is always exposed to the most

aggressive (or mildest) routes, which helps in managing useful lives
of critical components. Here, we assume an aircraft model designed

to fly the four hypotheticalmissions shown in Fig. 4a and consider the

mission mixes detailed in Table 1. We assume the airline company
has 300 aircraft allocated to each mission mix. Each aircraft is

assigned a fixed percentage of flights for each mission that composes

the mission mix. These percentages vary uniformly from 0 to 100%.
Therefore, within the fleet flying mission mix A, for example, there

is one aircraft flying 0% of mission 0 and 100% of mission 3; there is
another aircraft flying 1% of mission 0 and 99% of mission 3; there

is yet another aircraft flying 2% of mission 0 and 98% of mission 3;

and so forth. The same logic applies to the other mission mixes. We
chose these four missions as an effort to illustrate the different

conditions the fleet of aircraft usually experience in commercial
aviation. In reality, though, the number of missions and the number

of mission mixes depend on how operators decide to manage their

fleets. This way, we synthetically created data for a fleet of 300
aircraft.
We consider the control point on an aircraft fuselage illustrated

in Fig. 4b (crack in infinite plate) and assume that fatigue damage
accumulates throughout the useful life, as illustrated in Fig. 4c. For

the sake of this example, we assumed that the initial and the maxi-
mum allowable crack lengths are a0 � 0.005 m and amax � 0.05 m,

respectively. The metal alloy is characterized by the following Paris

law constants: C � 1.5 × 10−11 and m � 3.8.

Figure 5 illustrates part of the data used here. Figure 5a shows the
complete mission history in terms of far-field stresses for the aircraft
flying the most aggressive and most mild mission mixes of the fleet
(for the entire fleet, the far-field stress time histories follow the mixes
described in Table 1). Figure 5b shows how the crack length time
histories can be different across the entire fleet and highlights the two
extreme cases (most aggressive and most mild mission mixes of the
fleet) aswell as the fleetwide crack length distribution at the fifth year.
For the sake of this study, we consider that the history of cyclic loads
is known throughout the operation of the fleet (i.e., the data shown in
Fig. 5a are observed). On the other hand, the crack length history is
only partially known (i.e., data shown in Fig. 5b) and the availability
of the information depends on the adopted monitoring/inspection
strategy.

B. Scenario I: Continuous Monitoring of Control Point

As previously mentioned, in the first scenario, we assume that the
control point is instrumented and continuously monitored through
dedicated structural health monitoring sensors (e.g., comparative
vacuummonitoring and fiber Bragg grating sensors, etc.). In practical
applications, airline companies could limit the number of monitored
aircraft due to cost associated with the structural health monitoring
system (including its ownmaintenance). In such cases, data gathered
on part of the fleet are used to build predictive models for the
entire fleet.
We arbitrarily assume the dedicated structural health monitoring

sensors were installed on 60 aircraft of the fleet. This is equivalent to
20% of the fleet and represents a scenario in which the airline
companies are willing to instrument a significant portion of the fleet.
It should also allow us to study continuous monitoring without
having to instrument the entire fleet or having only very few instru-
mented aircraft. As detailed in Table 2, we studied different rates in
which sensor data are acquired (from data collection as sparse as once
a year to as refined as once a day). As mentioned before, we also
considered the case of weekly and daily crack length observation.
First, we evaluated the performance of purely data-driven recurrent

neural networks. We used the long short-term memory and gated
recurrent unit (Fig. 2b) architectures. Multiple configurations were
tested, varying the number of layers (stacked cells) and units (with
the same number of neurons per layer), as detailed in Table 3. Every
one of the nine configurations was used for each inspection period
(yearly, monthly, weekly, and daily), totaling 72 distinct models

Fig. 4 Cumulative damage over time for control point on aircraft fuselage as a function ofmission profile (assuming aircraft flies fourmissions per day).

Table 1 Missions mix detailsa

Mission (load in kilopascals)

Mission mix 0 (92.5) 1 (100) 2 (110) 3 (130)

A ✓ —— ✓

B —— ✓ ✓ ——

C —— ✓ —— ✓

aPercentage of flights for each mission varies from 0 to 100%.
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(36 LSTM and 36 GRU). The training of these neural networks was

performed using the mean square error loss function and the Adam

optimizer [66]. The different model architectures converged at

slightly different epochs, with all returning the best results before

1000 epochs. Nevertheless, the training was carried over to 2000

epochs to all models to ensure no further improvement would occur.

As illustrated in Fig. 6, the loss function of most of the models

converged to small values (although their rate of convergence can

greatly differ). Since we are using the Adam optimizer, we see high

oscillation early in the optimization process is a manifestation of the

learning rate adjustment, which is followed by a rapid convergence

midway, and then stagnation toward the end the optimization. After

training with the subfleet of 60 aircraft, all models were validated

against the entire fleet (300 aircraft). Figure 7 shows the percent

prediction errors of the recurrent neural network models at the end of

the fifth year for all 300 aircraft when crack length is observed yearly,

monthly, weekly, and daily. This detailed look at the prediction

accuracy reveals that the number of observations strongly contributes

to overall prediction accuracy. Not surprisingly, the more observa-

tions used in training, the more accurate the model predictions

are. Although the box plots show that some architectures would

outperform others, there is no clear trend with regard to complexity

(i.e., more complex models outperforming simpler models up to a

point). This indicates that the result is likely to be dependent on the

specific training of the neural network (through a combination of

random initialization ofweights, and optimization parameters such as

optimization algorithm, learning rate, number of epochs, etc.).

Figure 8 shows how the predictions at the end of the fifth year for

all 300 aircraft compared with actual crack lengths. Interestingly,

Figs. 8a and 8b show that both the LSTM- and the GRU-based

recurrent neural networks have similarly poor performance when

trained with yearly observations. The performance improves when

these models are trained with daily observations, although there is

still considerable prediction error across the crack length range (the

GRU-based seems to exhibit a bias toward the high crack length).

Figure 9 illustrates the model predictions up to the end of the fifth

year for all 300 aircraft. Figure 9a shows the time histories for the

actual crack length and the model predictions coming from one

Table 2 Inspection periods with its number of time steps and total
data points used for training

Periodicity Yearly Monthly Weekly Daily

Number of time steps (per aircraft) 5 60 260 1,825
Number of data points (60 aircraft) 300 3,600 15,600 109,500

Table 3 Designs based for LSTM and GRU networks

Configuration

Layer 1 1 1 2 2 2 4 4 4
Neurons 16 32 64 16 32 64 16 32 64
LSTM parameters 1,168 4,384 16,960 3,280 12,704 49,984 7,504 29,344 116,032
GRU parameters 928 3,392 12,928 2,560 9,728 37,888 5,824 22,400 87,808

Fig. 6 Example of loss function history throughout training of LSTM and GRU networks.

Fig. 5 Snapshot of synthetic data.
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LSTM- and oneGRU-based neural network. Figures 8 and 9a clearly

show that the crack length trends might be captured but the shape of

the curve is poorly approximated. Figure 9b illustrates the ratio

between the predicted and actual crack lengths. The ratio being close

to one is a good indication of prediction accuracy. For both LSTM-

and GRU-based neural networks, the predictions are mostly within

�25% (except for some predictions out of the LSTM-based neural

network, which can overestimate the final crack lengths by as much

as 75%).

We also tested the performance of the proposed hybrid physics-

informed neural network when there is continuous monitoring of the

control point. We built the model using multilayer perceptrons as the

stress intensity layer in series with a physics-based Paris law layer (as

illustrated in Fig. 3c). Table 4 details the multilayer perceptron

designs considered in this study. We varied the number of layers

and neurons within each layer as well as the activation functions. We

used the linear, hyperbolic tangent (tanh) and the exponential linear

unit (elu) activation functions, given as follows:

linear�z� � z; tanh�z� � ez − e−z

ez � e−z
;

and elu�z� �
(
z when z > 0

ez − 1 otherwise
(7)

Fig. 8 LSTM and GRU predictions versus actual crack length at the fifth year for entire fleet (300 aircraft).

Fig. 9 Actual and LSTM- and GRU-predicted crack lengths over time for entire fleet (300 aircraft).

Fig. 7 Box plot of percent error in crack length prediction for LSTM and GRU networks at fifth year for entire fleet (300 aircraft):
%error � 100 × �aPRED − aactual∕aactual�.
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The training of these neural networks was performed using the

mean square error loss function and the Adamax optimizer [66].

Given that the hybrid physics-informed neural network converged

much faster (all models converged before 50 epochs), the training

was carried over to 100 epochs to ensure no further improvement

would still occur.

Similarly to what happened with the data-driven architectures (see

Fig. 6), Fig. 10 illustrates the loss function oscillation early in the

optimization process followed by convergence and stagnation toward

the end the optimization. Figure 10 also shows that the different

multilayer perceptrons converged to roughly the same loss function

values at the end of the training process. Figure 11a shows the percent

prediction errors of the recurrent neural network models at the end of

the fifth year for all 300 aircraft when crack length is observed yearly

and monthly. The main advantage of using physics-informed neural

networks is reducing the need for training points. In this case, the

costly part is the acquisition of crack length observations. One can

argue that a monitoring system that offloads data yearly or monthly is

cheaper to operate and maintain when compared to one that is

expected to produce data on a daily basis, for example. Therefore,

we will only show results for yearly and monthly crack length

observations. Visual comparison shows that all the seven physics-

informed neural networks had percent errors within the same order of

magnitude. This is true even when models are trained with yearly

observations, which confirms that the physics-informed layer com-

pensates for the reduced number of observations. From an airline

company perspective, the motivation behind the reduction in the

number of training points is the cost associated with continuously

monitoring the aircraft in the fleet. In this case study, the costly part is

the acquisition of crack length observations. Therefore, it is expected

Fig. 10 Example of loss function history throughout training of physics-informed neural networks with continuous monitoring of control point.

Fig. 11 Physics-informed neural network predictions versus actual crack length at fifth year for entire fleet (300 aircraft): %error � 100 ×
�aPRED − aactual∕aactual�.

Table 4 Multilayer perceptron configurations used to model the stress intensity range

Number of neurons/activation function

Layer no. MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 MLP 6 MLP 7

0 5∕ tanh 10∕elu 10∕ tanh 10∕ tanh 20∕ tanh 20∕ tanh 40∕ tanh
1 1∕linear 5∕elu 5∕elu 5∕ tanh 10∕elu 10∕elu 20∕elu
2 —— 1∕linear 1∕linear 1∕linear 5∕elu 5∕ tanh 10∕elu
3 —— —— — — —— 1∕linear 1∕linear 5∕ tanh
4 —— —— — — —— —— —— 1∕linear
Parameters 21 91 91 91 331 331 1,211
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that a monitoring system that offloads data yearly or monthly is more
economical to operate and maintain when compared to one that is
expected to produce data on a daily basis, for example.
Figure 11 shows how the predictions at the end of the fifth year for

all 300 aircraft compare with actual crack lengths. Interestingly,
Figs. 11b and 11c confirm the robustness of the physics-informed
neural networks when trained with yearly observations. We also see
that the relatively large percent errors (let us say above 10%) are
likely coming from aircraft exhibiting small crack lengths at the end
of the fifth year. On the basis of the number of training points and
prediction errors, the physics-informed neural networks outperform
the data-driven models for this application.
Finally, Fig. 12b illustrates the model predictions up to the end of

the fifth year for all 300 aircraft for multilayer perceptron 1 (detailed
in Table 4). As opposed to Fig. 9, Fig. 12b shows that the crack length
trends as well as the curve over time are well approximated (that is
attributed to the physics-informed layer). The models are better
suited for tracking crack length than the data-driven counterparts
(i.e., the LSTM- and the GRU-based neural networks).

C. Scenario II: Scheduled Inspection of Control Point

As previously mentioned, in the second scenario, we also consider
the case inwhich the control point in the fuselage panel is inspected in

regular intervals through nondestructive evaluation approaches (e.g.,
eddy current, ultrasound, dye penetrant inspection, etc.). Due to
cost associated with inspection (mainly, downtime, parts, and labor),
it is customary to perform inspection in predefined intervals (which
might vary from control point to control point). Usually, aircraft are
inspected in batches to avoid grounding the entire fleet. In such a
case, data gathered on part of the fleet are used to build predictive
models for the entire fleet. These predictive models can be used to
guide the decision of which aircraft should be inspected next.
Table 5 details the hypothetical cases for selecting the aircraft out

of fleet for inspection. Figure 13 highlights the 15 observed crack
lengths at the end of the fifth year for cases 1 to 3 of Table 5. In the
training of the recurrent neural networks, the inputs are always
observed (i.e., the full far-field stress range time history is observed).
However, the output is only observed at inspection. At a rate of four
flights per day, in a period of five years, thismeans that we observed 5
to 60 time histories of 7300 data points each (total of 36,500 to
438,000 input points) and only 5 to 60 output observations. Here, the
intent is to study the influence of number and distribution of inspec-
tions (output observations) in the training of the neural network. In all
cases, inspection is assumed to take place at the fifth year of oper-
ation. Similarly to what would happen in real life, the first inspection
results are used to train the models, which will be used to make crack
length prediction across the entire fleet. Based on the performance
results of data-driven and physics-informed neural networks in sce-
nario I, we decided to focus this study only on the physics-informed
neural networks. The poor performance of the purely data-driven
neural networks as the number of training points gets reduced indi-
cates they are not suitable for scenario II.
We first study the impact of themultilayer perceptron design in the

training and validation of the physics-informed recurrent neural net-
works. We use data from 15 aircraft in which there is uniform
coverage of the crack lengths (case 3 fromTable 5, shown inFig. 13c).
The mean square error has fast convergence throughout training, as
shown in Fig. 14a. Figure 14b shows the predictions at the end of the

Table 5 Scenarios for inspection data

Inspected aircraft

Distribution of observed crack length 5 15 30 60

Case 1: biased toward small crack lengths —— ✓ — — ——

Case 2: following true distribution of
crack length

—— ✓ — — ——

Case 3: uniform coverage of crack lengths ✓ ✓ ✓ ✓

Case 4: biased toward large crack lengths —— ✓ — — ——

Fig. 13 Fatigue crack length history and observations (15 aircraft) at the fifth year. Details about each case are found in Table 5.

Fig. 12 Actual and physics-informed neural network predicted crack length over time.

Article in Advance / NASCIMENTOAND VIANA 9

D
ow

nl
oa

de
d 

by
 R

en
at

o 
G

io
rg

ia
ni

 d
o 

N
as

ci
m

en
to

 o
n 

Se
pt

em
be

r 
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
92

50
 



fifth year for the training set (15 inspected aircraft) before and after

training. Figure 14c shows the predictions at the end of the fifth year

for the entire fleet (300 aircraft) before and after training. In both

cases, the model initially tends to underpredict the large crack

lengths. After the recurrent neural network is trained, the predictions

are in good agreement with the actual values. There are onlymarginal

differences in performance of the various multilayer perceptron

configurations (confirming that the stress intensity range is relatively

simple function of current crack length and far-field stress).
Figure 15 illustrates the crack length predictions over time for

multilayer perceptron (MLP) 1 (see Table 4 for details) before and

after training and how they compare with the actual crack length

histories. As seen in Fig. 15a, there is good agreement between

predicted and actual crack length histories. Figure 15b shows the

ratio between the predicted and actual crack growths over time for the

entire fleet before and after training. Initially, the model grossly

underpredicts large crack lengths and predictions are within 35 and

85% of the actual crack length. After the recurrent neural network is

trained, predictions stay within�15% of the actual crack length, for

the most part.
Figure 16 shows how the number of inspected aircraft affects

the prediction accuracy of the physics-informed neural network.

Fig. 16 Effect of training points in crack length predictions. Table 4 details the MLP configurations.

Fig. 15 Actual and predicted crack lengths over time for the entire fleet (300 aircraft).

Fig. 14 Loss function history and predictions before and after training.
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As mentioned before, besides the time series for loads (inputs), only
observations for crack at the fifth year are used for training themodel.
Figure 16a shows themean squared error (i.e., loss function at the end
of training) as a function of the number of training points. Figure 16b
shows the predictions versus actual crack lengths for the entire fleet at
the end of the fifth year forMLP 1. Evenwith as few as five inspected
aircraft (entire load histories and crack length at the fifth year), the
model is capable of producing accurate predictions. This might look
counterintuitive at first because onewould expect that the more crack
length observations used for training, the more accurate the models
would be. Nevertheless, we found that, even for the case of five
inspected aircraft, the number of input observations (36,500) is large
enough compared to the number of trainable parameters (as shown in
Table 4, MLP 1 has only 21 trainable parameters). On top of that, the
physics-informed layer (Paris law) greatly influences the shape of the
output versus time (monotonically and exponentially increasing).
Therefore, the resulting physics-informed neural networks are rela-
tively accurate, even with few observed outputs.
Last but not least, we also studied the effect of the distribution

of crack length observations used for training the recursive neural
network. For the sake of illustration, consider that the training
set consists of observations for crack lengths and far-field cyclic
stress at 15 different aircraft. One might be interested in looking at
how well the resulting model is when the crack length observation is
biased toward the low values (or toward high values) or, maybe, the
distribution of crack length observations does not reflect the fleet
distribution. In real life, in the absence of estimators for crack length,
the first planes to be inspected are chosen based on rudimentary
models based on the history of flown missions. Table 5 and Fig. 13
detail the distribution of observed crack lengths considered here.
Figure 16c shows the summary of results for this part of the study.
Interestingly, except for case 2, the trained physics-informed neural
network was able to predict crack length (there are only minor
differences among cases 1, 3, and 4). This indicates that as long as
the range of observed crack length covers the plausible crack length
range at the fleet level, the resulting model tends to be accurate, and
the distribution of observed crack length has minor effects on the
resulting network.

D. Notes About Computational Cost

Our implementation is done in TensorFlow (version 2.0.0-beta1)
using the Python application programming interface. To replicate our
results, the interested reader can download codes and data, as well as
install the PINN package (base package for physics-informed neural
networks used in this work) available at Ref. [67]. In light of the
discussed application, the computational cost associated with the
neural networks is considered small (training done in a few minutes
using a laptop computer and predictions for the fiveyears of operation
at a small fraction of a second per aircraft). The intended use of the
models is such that after data are collected, models will be trained and
prediction is performed across the fleet. The model predictions are
used to decidewhich aircraft should be inspected next and potentially
monitor the fleet with predictions done after each flight. In other
words, the few minutes and fractions of seconds needed to run the
training and prediction are negligible compared to the time between
flights and between scheduled inspections (given the moderate crack
growth rates for some aircraft, it is conceivable that the model is
exercised between large periods of time, such as weekly runs).

E. Intended Usage and Limitations of the Proposed Algorithm

We believe our proposed approach can be used in several practical
applications. For example, engineers and scientists could leverage
physics-informed kernels that have been previously developed and
proved to be able to model certain failure modes. Then, neural net-
works layers can be used to compensate limitations of such physics-
informed kernels by modeling parts of the system that are not fully
understood. This is a straightforward and practical way to character-
izemodel-formuncertainty.Althoughwe illustrated the case inwhich
physics-informed and data-driven layers are connected in series, we
believe the final design of the neural network architecture depends on

the problem. The implementation of MODEL in Fig. 3a can combine
physics-informed and data-driven layers forming complex architec-
tures (mixing series, parallel, bridge, and other arrangements).
We expect the hybrid models should perform very well in cases

for which inputs xt are observed throughout all the time stamps
but outputs at are observed only at few time stamps. The physics-
informed kernels are expected to compensate for the lack of output
observations. In cases where both inputs and outputs are observed
throughout the time stamps, we acknowledge that purely data-driven
approaches could perform as well as the hybrid models.
We advocate toward the hybrid implementation of MODEL,

combining physics-informed and data-driven layers. As we will
demonstrate with the numerical experiments, we have observed that
the hybrid model requires very few output observations to be trained.
Unfortunately, one might also argue that the hybrid nature of the
model is its main limitation. In fact, we believe there are at least
two cases that can complicate the implementation of our proposed
algorithm. First, it could be that the understanding of the physics is so
limited that no physics-informed approximations are available. In
this case, one might have to use a purely data-driven implementation
of MODEL (or maybe other recurrent neural network architecture,
such as the long short-term memory). Even though this is a valid
approach, we believe it could limit the benefits in terms of reduction
in required training data. Second, the physics-informed kernels need
to be fast to compute (i.e., computational cost comparable to matrix
algebra found in multilayer perceptrons). Complex models, such as
those involving iterative solvers, could make the computational cost
of training and prediction prohibitive and/or make it difficult to fit the
neural network.

V. Conclusions

In this paper, a novel physics-informed recurrent neural network
was proposed for cumulative damage modeling. The case of monitor-
ing fatigue crack growth in a fleet of aircraft was specifically inves-
tigated. As inputs for the cumulative damage model, the current
damage level (crack length) and far-field stresses (however, the recur-
rent neural networks can take other inputs, depending on the problem)
were considered. Well-known recurrent neural network cells were
tested, such as the long short-term memory and the gated recurrent
unit; and they were compared with the proposed novel physics-
informed cell for cumulative damage modeling. This proposed cell
is designed such that models can be built using purely data-driven or
physics-informed layers or, more interestingly, hybrids of physics-
informed anddata-driven layers (as themodel discussed in this paper).
Two numerical experiments were designed in which a fleet of 300
aircraft is to bemonitored. In the first scenario, onboard structural and
health monitoring sensors provide crack length observations for a
portion of the fleet. In the second scenario, crack length observation is
obtained through scheduled inspection.
With the help of the numerical studies, it was demonstrated that

recurrent neural networks can be used to model cumulative damage
(here, exemplified by fatigue crack growth). For the case in which
onboard structural and health monitoring sensors are installed, it was
learned that 1) architectures such as the long short-term memory and
the gated recurrent unit tend to require frequent aircraft inspection
data so that predictions of trained models can start tracking damage
over time, and 2) the proposed recurrent neural network cell (hybrid
of data-driven and physics-informed layers) can track damage over
time, even when trained with a limited number of inspection data. As
expected, it was confirmed that the performance of purely data-driven
architectures is highly dependent on the amount of data; unfortu-
nately, for the studied scenario, their predictions tend to be poor. For
the case in which crack length data are obtained through scheduled
inspection, it was learned that the proposed recurrent neural network
cell successfully models fatigue crack growth. The effect of the
distribution and number of training data was studied in the accuracy
of the crack length predictions at the fleet level after five years worth
of operation. It was learned that even with a reduced number of data
points, the proposed physics-informed neural network can approxi-
mate fatigue crack growth.
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The results motivate extending the study in several aspects. For
example, studying the effect of improved physics of failure models
(e.g., by including both initiation and propagation in the cumulative
damage) is suggested. It is seen that considering uncertainty is
important for this class of problems. For example, one can study
the effect of the scatter in material properties as well as uncertainty in
damage detection and quantification. Finally, one can also study how
this physics-informed neural networks could be used to help decision
making in operations and maintenance of industrial assets (e.g., by
guiding decisions regarding repair and replacement of components).
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